On the distance from a matrix polynomial to matrix polynomials with two prescribed eigenvalues
نویسندگان
چکیده مقاله:
Consider an n × n matrix polynomial P(λ). A spectral norm distance from P(λ) to the set of n × n matrix polynomials that have a given scalar µ ∈ C as a multiple eigenvalue was introduced and obtained by Papathanasiou and Psarrakos. They computed lower and upper bounds for this distance, constructing an associated perturbation of P(λ). In this paper, we extend this result to the case of two given distinct complex numbers µ1 and µ2. First, we compute a lower bound for the spectral norm distance from P(λ) to the set of matrix polynomials that have µ1, µ2 as two eigenvalues. Then we construct an associated perturbation of P(λ) such that the perturbed matrix polynomial has two given scalars µ1 and µ2 in its spectrum. Finally, we derive an upper bound for the distance by the constructed perturbation of P(λ). Numerical examples are provided to illustrate the validity of the method.
منابع مشابه
on the distance from a matrix polynomial to matrix polynomials with two prescribed eigenvalues
consider an n × n matrix polynomial p(λ). a spectral norm distance from p(λ) to the set of n × n matrix polynomials that havea given scalar µ ∈ c as a multiple eigenvalue was introducedand obtained by papathanasiou and psarrakos. they computedlower and upper bounds for this distance, constructing an associated perturbation of p(λ). in this paper, we extend this resultto the case of two given di...
متن کاملThe distance from a matrix polynomial to matrix polynomials with a prescribed multiple eigenvalue
For a matrix polynomial P (λ) and a given complex number μ, we introduce a (spectral norm) distance from P (λ) to the matrix polynomials that have μ as an eigenvalue of geometric multiplicity at least κ, and a distance from P (λ) to the matrix polynomials that have μ as a multiple eigenvalue. Then we compute the first distance and obtain bounds for the second one, constructing associated pertur...
متن کاملOn the distance from a weakly normal matrix polynomial to matrix polynomials with a prescribed multiple eigenvalue
متن کامل
On robust matrix completion with prescribed eigenvalues
Matrix completion with prescribed eigenvalues is a special kind of inverse eigenvalue problems. Thus far, only a handful of specific cases concerning its existence and construction have been studied in the literature. The general problem where the prescribed entries are at arbitrary locations with arbitrary cardinalities proves to be challenging both theoretically and computationally. This pape...
متن کاملAlgebraic adjoint of the polynomials-polynomial matrix multiplication
This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field
متن کاملMatrix polynomials with specified eigenvalues
Article history: Received 25 January 2014 Accepted 9 October 2014 Available online 5 November 2014 Submitted by F. Dopico MSC: 65F15 65F18 47A56
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 1
صفحات 25- 38
تاریخ انتشار 2015-09-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023